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1 Introduction

Cryptography is a subfield of mathematics and computer science concerned with
achieving the following in digital communications:
• Confidendiality: ensuring that only the intended party can read your mes-

sages.

• Integrity: ensuring that third parties cannot modify messages that have been
sent to you without being discovered.

• Authenticity: ensuring that a party sending you messages is who they claim
to be.

Typically, cryptographic protocols are based on the assumed hardness of some
mathematical problem. A popular choice is the discrete logarithm problem, where
given q ∈Z and g,h ∈Z/qZ, you must find a such that:

ga = h (mod q)

Some problems which are plausibly hard for classical computers are however
efficiently solvable by quantum computers, including the discrete logarithm prob-
lem [Sho94]. While we do not yet have practical quantum computers, there is some
concern that we are not adequately prepared for a future in which we do. As such,
there is interest both in:

• Post-quantum cryptography: classical cryptography that is resilient against
quantum attackers.

• Quantum cryptography: cryptography using quantum computers to achieve
things not possible in classical cryptography.

2 Lattice-based cryptography

Lattice-based cryptography is an area of cryptography based on assumed hard
problems over lattices. An important problem is SVP, which asks to find the short-
est non-zero vector in a lattice given a basis for it. SVP is known to be NP-hard
[Ajt96] and is therefore likely hard also for quantum computers.

Figure 1: an example of a trivial lattice.

SVP gives rise to other lattice-based problems such as SIS and LWE, which
have been used to construct cryptographic primitives such as hash functions
[GGH00], encryption [Reg09], and signatures [GPV08], among others.

In addition to developing new protocols, my research will cover cryptanalysis of
cryptographic protocols based on less well-accepted assumptions (such as NTRU)
as well as considering reductions between and attacks against assumed quantum-
hard problems.

3 Quantum money

Quantum money is an example of a quantum primitive that does not have a clas-
sical equivalent. A quantum money protocol consists of two procedures:

• Gen: which takes a security parameter 1λ produces a quantum banknote
∣∣ψ〉

with classical serial number σ.

• Ver: which, given a quantum banknote
∣∣ψ〉 and classical serial number σ, out-

puts a bit depending on whether
∣∣ψ〉 corresponds to σ.

With the security requirement being that no BQP adversary can, given
(
∣∣ψ〉 ,σ← Gen(1λ), produce a second state

∣∣φ〉 such that Ver(
∣∣φ〉 ,σ)= Ver(

∣∣ψ〉 ,σ)= 1
[Wie83].

Such a notion cannot be achieved classically because all classical data can freely
be copied. Thus, given some value x you can create as many copies of x as you like.
This is not the case in the quantum world due to the no-cloning theorem, which
states that there are no U ∈U(H ⊗2),

∣∣φ〉 ∈H such that:

U
(∣∣ψ〉 ∣∣φ〉)= ∣∣ψ〉 ∣∣ψ〉

for arbitrary states
∣∣ψ〉. Essentially, this theorem states that there is no possible

way to copy unknown quantum states, which is what makes quantum money un-
forgeability possible.
Quantum money is so-called because it can be used for a digital currency scheme
that is very similar to physical currency, wherein:

• There is a central mint responsible for producing new banknotes.

• Mere possession implies ownership of a banknote.

• Transactions only involve physically exchaning banknotes.

Quantum money and related primitives also have applications beyond their use
as currency. For instance: a strenghtening of quantum money called quantum
lightning can be used to generate random numbers along with proofs that they
are indeed random [Zha19].

4 Pseudorandom states and unitaries

Quantum computers are capable of generating truly random classical strings.
However, there is also interest in producing quantum states and unitaries that
are indistinguishable from random [JLS18]:

• Pseudorandom states (PRSs): efficiently-generable quantum states such
that polynomially many copies of a random of a PRS are indistinguishable from
as many copies of a Haar random state.

• Pseudorandom unitaries (PRUs): efficiently-generable quantum unitaries
such that given access to polynomially many queries to either a PRU or a Haar
random unitary, the two are indistinguishable.

Interestingly, neither PRSs nor PRUs imply the existence of classical one-way
functions [Kre21]. Even more interestingly, they have been shown to be suffi-
cient for constructing Minicrypt cryptographic primitives such as commitments
and symmetric encryption [Ana+22].
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