Securing OS Binaries:
TEE-Based Progressive Randomization

Armand-Alexandru Balint, Arto Niemi

What i1s code randomization?

Diversification method that alters a program's executable memory

layout to make run-time addresses unpredictable.

What is fine-grained randomization?

Unlike traditional ASLR which shuffles large memory segments
(code, stack, heap) and where a single leak often de-randomizes
an ASLR segment; fine-grained preserves internal unpredictability.
It reorders smaller, well-defined code units within these segments.
This creates an unpredictable internal layout, sizably increasing

attacker effort even if segment base addresses are known.

High-level approach

Visual guide

Ensure file T :
Starting state : - . Procedural
'"‘EQ”‘Y 1 Conition eheck, [step

Start re- | ‘ Replace
[randamlzatmn binaries] TEE__

1 . =
| Is it a es - Fetch & Pass Plaintex Randomize ELF
—> :%% ,
l .

convenient time? binary
Yes| l
3 ;r;y-b;}ari;s--' Store the ' Encrypt
| remaining? ! encrypted file [ELF binary
N
v
Finish
[repeat?]

reate/Fetch key

\
Read file in
shared memory

J

Derive nonce

Receive & c
Validate data and part of suffix and creat
honce full nunce

v
Eoriaid data Embed magic Compute FNV-1a Perform AES-
to the TA bytes and data hash between GCM encrvption
P into mphertext suffix and tag yp

necessary

Perfurm
cleanup

Receive
ciphertext

End goal

Prevent passive memory attacks and maximally reduce active

exploit surfaces with negligible performance overhead. We achieve
this by protecting ELF binaries through a TEE-interfacing preloader

for secure, metadata-driven decryption and randomization.

Why is It nhecessary?

Roughly 70% of security flaws come from memory safety, a
problem theoretically solvable, but practically insurmountable
across existing, extensive compiled software. While operating
systems like Linux, MacOS, and Windows randomize base
addresses, It Is not enough against these flaws, making
fine-grained randomization necessary for legacy codebase.

Design criteria:

Efficiency: Additional overhead must be negligible
Secrecy: Sensitive data must never enter user space

Integrity: Interruptions of any must not corrupt any data
Uniqueness: Nonces must be unique and never be reused

Assumed attacker capabilities:

I) Persistent access to plaintext files on disk
Il) Code-reuse attack against a live process
lll) Information disclosure attack against a live process

REE - TEE

-) \ \
Read ELF, find : Decode HRR and Generate
HRR secti validate s = random
. ELE-&HBR F permutatmn J

_': : :
Prepare shared | Puc ELF Fix internal HRR Compute
memo DGEERdEa. A structs random la nut
& ELF tables b y
v

Open session
and pass data

Shuffle RU pply relocation unnELeeilaW I
| |content in buffer resources |

Entropy

Our randomization process operates on distinct code
segments termed Randomization Units (RUs). By
permuting these RUs, we achieve a combinatorial
complexity of |[RU|!, leading to an entropy of log, (RU!)

bits from the shuffling scheme itself. However, when an
attack requires a chain of k specific gadgets, each residing
In different RUs, the complexity of locating all k RUs in their
new, permuted positions can be approximated by an

N/
entropy of log, ((N — &)) where N denotes the RUs.

Assuming an attacker would |

need 8 gadgets for an attack, 50 ' |
entropy growth based on the g
number of RUs in the binary 5| ¢ (8.15.29921)

IS depicted on the right

Helsinki System Security Lab (HSSL)

HSSL drives renewal and mastery in the field of platform and device related security technologies, especially for Huawei consumer devices such as mobile phones, laptops, televisions
and automotive. We do research in topics such as hardware-assisted isolation and integrity, as well as in operating system protection (hypervisor, TEE, secure enclaves and kernel
hardening). We also carry expertise in cryptography and systems security functionality such as device key management (PKI), device attestation and key-store solutions.

V2 HUAWEI

