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Introduction

Timed cryptography studies a family of crypto-
graphic primitives with diverse functionalities
designed to meet their security goals only for
a short (polynomial) amount of time. This in-
cludes, for example, time-lock puzzles, timed-
commitments, proofs of sequential work, verifi-
able delay functions, and delay encryption.

Verifiable Delay Functions (VDFs) let a
prover show they spent a specific amount of time
running a function, and the verifier can quickly
check the result.

A VDF protocol includes these steps:
• Setup: Creates public parameters.
• GenInput: Generates the input for the function.
• Execute: Runs the function sequentially to get

the output.
• Prove: Creates a proof showing the function

was executed correctly.
• Verify: Checks the proof to confirm the execu-

tion.
From the efficiency perspective, Execute

should not be computable in a time < T .
Verifiable Delay Function is traditionally on

the following ingredients:
(a) sequential function,
(b) commitment to the trace of the computation of

the sequential function,
(c) argument system for proving the correctness

of the committed trace of the computation.

Pre-quantum: Repeated Squaring

The state of timed cryptography in pre-quantum
settings is largely unsatisfactory. Virtually all
efficient schemes are based on the hardness of a
single problem (or variants thereof), namely the
sequential squaring assumption. Loosely speak-
ing, such an assumption postulates that the re-
peated application of the function

f (x) = x2 mod N,

where N = pq is an RSA modulus, is the fastest
algorithm to compute x2

T
mod N given x. In

other words, there is no better algorithm than
T -sequential iterations of f , provided that the or-
der of the group is unknown by the evaluator.

Post-quantum assumption

In [1], a new candidate family of sequential func-
tions is put forward, which is closely connected
with lattice-based cryptography. Specifically, the
new sequential function is defined to be the T
repeated application of the binary decomposi-
tion operation followed by a SIS-based collision-
resistant hash function [2], designed so that the
domain and range of the function are the same.

Specifically, the base function fA : Rn
q → Rn

q is
defined as:

fA(z) := −AG−1(z) mod q.

Here, R is a subring of a cyclotomic ring.
Other PQ-secure candidates, such as MinRoot
and ZKBdf, rely on different sequentiality as-
sumptions but have not demonstrated the same
level of practicality as our solution.

vSIS Assumption & Commitments

Short Integer Solution (SIS) is a well-known lat-
tice problem that is used as a building block for
many cryptographic primitives. The SIS prob-
lem (in ring variant) is defined as follows: given a
random matrix A ∈ Rn×m

q , a target vector t ∈ Rn
q ,

and a bound β, find a short (bounded by β) vector
x ∈ Rm

q such that Ax = t mod q. SIS-bases com-
mitment of a (short) witness w ∈ Rm

q is c ∈ Rn
q

such that
Aw = c mod q,

where A is a random matrix and w is the wit-
ness. The commitment scheme is binding if it
is hard to find a different witness w′ such that
Aw′ = c under the SIS assumption.

Vanishing SIS (vSIS) is a new assumption [3]
which is similar to the SIS assumption, but A
yields a row-tensor structure, i.e. A = A0 • . . . •
Aµ−1, where Ai ∈ Rn×d

q for i ∈ [µ] and • denotes
the row-wise Kronecker product (also called face-
splitting product).

vSIS-based Argument System

The heart of Papercraft is a succinct argument
system of [4], extending the work of [3], that
proves the knowledge of (short) solution to the
linear relations over the ring Rq, i.e. knowledge
of a witness w ∈ Rq such that:

Fw = y mod q and ∥w∥σ,2 ≤ β

where the matrix F has a row-tensor structure.
The argument system of [4] consists of the fol-
lowing main ingredients:

Πsplit and Πfold designed to
reduce the dimension of the
witness at the expense of
increased norm,
Πb-decomp to decrease the norm
(eliminating the correct-
ness gap) at the expense of
expanding the number of
columns of the witness,
Πnorm to serve as an interme-
diate opening to the norm,
effectively proving that the
norm at the given point
is exactly β. This protocol
therefore “upgrades” the
norm during the extraction.

Furthermore, [4] has been equipped with Πbin,
which is conceptually similar to the Πnorm proto-
col, but it is designed to prove that the witness
is a bit string, i.e. w ∈ Rm

2 . As a consequence, a
combination of these protocols yields a succinct
argument system for proving the the linear rela-
tion with exact coeficcient norm.
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Combining Argument System and
Sequential Function

The sequential function discussed earlier is a lin-
ear relation over the ring Rq. The trace of this
function’s computation is presented as witness w
to a staircase-shaped matrix F, which is a com-
bination of the binary gadget matrix G and the
random matrix A. The relation can be expressed
as: 
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where the appended bottom-most row c is a
commitment to the witness w, and the first and
last vectors are the input and output of the func-
tion, respectively. The matrix G is a binary gad-
get matrix, while A is a random matrix.

Staircase Relation

The aforementioned relation of the VDF induces
a staircase-shaped matrix formed by interleaving
binary gadget matrix G and the hash matrix A.

However, the staircase matrix is not a row-
tensor structure and thus not immediately suit-
able for the aforementioned argument system.
We introduce Πstaircase, a protocol that transforms
the staircase matrix into a row-tensor. The
structure is imposed by “batching”, i.e. left-
multiplying, both sides of the staircase relation
with cT := (c0, . . . , cn−1), a challenge vector with
random c sent by the verifier.

Concrete Evaluation

We implemented Papercraft in Rust and con-
ducted experiments on a high-performance com-
puting node.a Our implementation comprises ≈
7000 lines of Rust code, complemented by Sage-
Math scripts. Parallelism was extensively em-
ployed, facilitated by the Rayon library. For core
arithmetic, we optimised multiplication in small
cyclotomic rings using the Karatsuba algorithm,
while employing number theoretic transform for
larger polynomial convolutions. In our evalua-
tions, we measured prover runtime, verifier run-
time, proof size, and scaling behaviour across dif-
ferent security levels and delay parameters. The
most favourable experiments showed Papercraft
achieves verification in 7 seconds for VDF com-
putations requiring over 6 minutes. Proof sizes
were ≈ 15 MB, while the witness size was 80MB.
The prover runtime was ≈ 4 hours.
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aThe calculations presented above were performed us-

ing computer resources within the Aalto University School
of Science “Science-IT” project.


