
Experimental Setup
❖ The experiment was conducted using FederatedScope [1] FL 

platform.

❖ The experiment involves an FL server and 3 distributed clients; 

each deployed as a container on a Kubernetes cluster that 

included 3 worker nodes: 2 Raspberry Pi 4B and 1 VM running 

in our CyberRange. The cluster is configured to use both 

docker containers or Confidential Containers. The FL server 

and client 1 were deployed in the VM, client 2 and 3 on one 

Raspberry Pi each.

❖ The work utilized a two-layer CNN model (ConvNet2) for image 

classification with the MNIST [2] image dataset.

❖ For attacking the FL model, we used Improved Gradient 

Leakage attack (iDLG) [3].

Takeaways
• CoCo excels by providing application agnostic security 

without impacting ML accuracy but comes with small 

memory, processing and time penalty 

• DP works in any HW platform but impacts slightly 

accuracy and significantly energy use

• Overall, deploying FL in CoCo offers a balanced trade-

off between sustainability and security.
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•Federated learning is a prominent AI solution for private critical data, but vulnerable to 

malicious aggregating nodes.

•We demonstrated two privacy-enhancing approaches: Differential Privacy and Trusted 

Execution Environments.

•Their costs for resource consumption and AI accuracy were explored with Regular and 

Confidential Containers on the Intel and ARM platforms.

Fig 1: A conceptual model of containerized confidential learning on 6G outlines infrastructure, orchestration, 

learning, and information threats in distinct layers
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Resource Consumption and Performance

Analysis

Device
Train 
Accuracy

Val 
Accuracy

Test 
Accuracy

Power 
(mWh)* Time (Min)

Peak 
Memory 

(MB)

Baseline containerized FL

Client 1 1 .94 .99 15.93 680.35

Client 2 1 .92 .95 775 15.22 548.55

Client 3 1 .96 .93 15.00 548.03

Server - .94 .96 17.01 629.58

Differential Privacy (NBAFL, epsilon: 10, mu: 0.01)

Client 1 1 .95 .99 18.53 699.30

Client 2 1 .94 .94 973 17.80 549.19

Client 3 1 .94 .93 17.57 549.12

Server - .95 .93 19.98 632.90

Confidential Containerized FL

Client 1 1 .94 .99 16.41 683.80

Client 2 1 .96 .93 786 14.93 541.66

Client 3 1 .92 .95 16.50 541.66

Server - .94 .96 17.55 627.05

Fig 2: An architecture for the security and sustainability-driven concept

Fig 3: iDLG Attacks on Baseline, DP, and TEEs
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* Power consumption was measured with Otii Arc Pro
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