

Confidential Containerized Federated Learning for Distributed Security

Md Muzammal Hoque, Andrea Gentili, Ijaz Ahmad, Andrea Dalla Costa, Jani Suomalainen, Markku Kylänpää

VTT Technical Research Centre of Finland

firstname.lastname@vtt.fi

•Federated learning is a prominent AI solution for private critical data, but vulnerable to malicious aggregating nodes.

- •We demonstrated two privacy-enhancing approaches: Differential Privacy and Trusted **Execution Environments.**
- •Their costs for resource consumption and AI accuracy were explored with Regular and Confidential Containers on the Intel and ARM platforms.

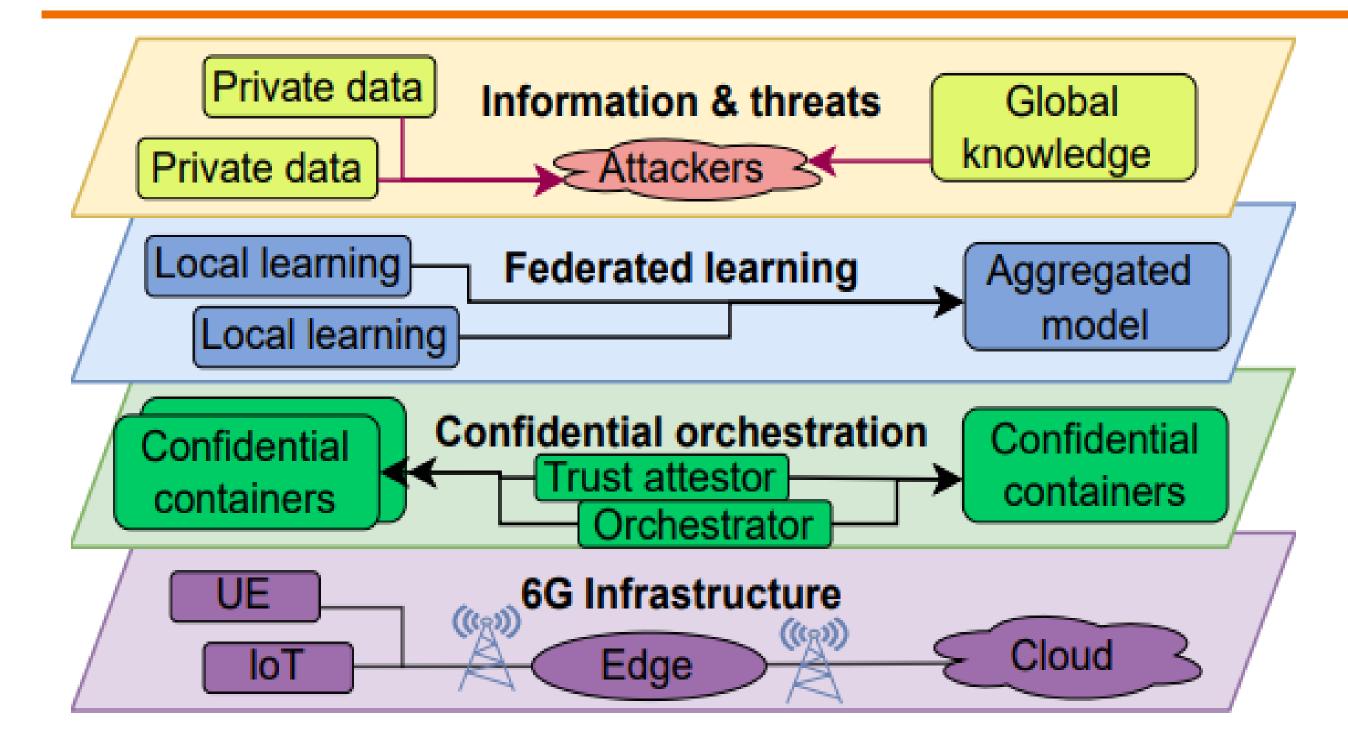


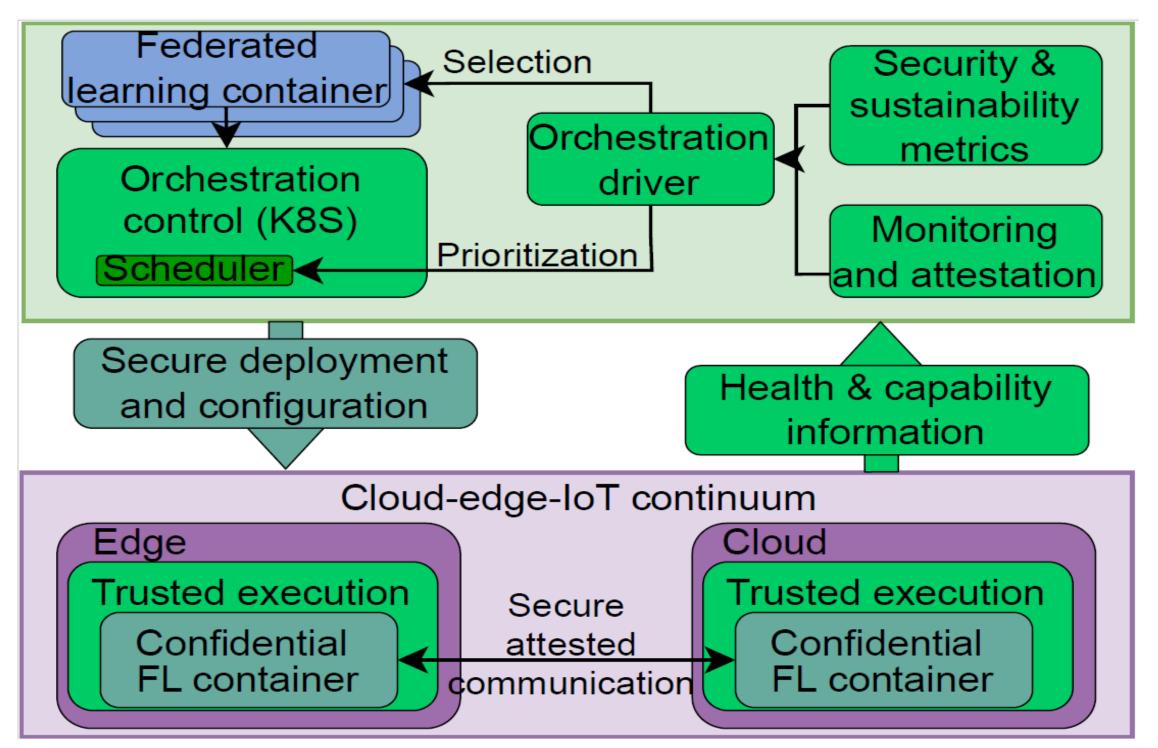
Fig 1: A conceptual model of containerized confidential learning on 6G outlines infrastructure, orchestration, learning, and information threats in distinct layers

Resource Consumption and Performance Analysis

Device	Train Accuracy	Val Accuracy	Test Accuracy	Power (mWh)*	Time (Min)	Peak Memory (MB)
Baseline containerized FL						
Client 1	1	.94	.99		15.93	680.35
Client 2	1	.92	.95	775	15.22	548.55
Client 3	1	.96	.93		15.00	548.03
Server	-	.94	.96		17.01	629.58
Differential Privacy (NBAFL, epsilon: 10, mu: 0.01)						
Client 1	1	.95	.99		18.53	699.30
Client 2	1	.94	.94	973	17.80	549.19
Client 3	1	.94	.93		17.57	549.12
Server	-	.95	.93		19.98	632.90
Confidential Containerized FL						
Client 1	1	.94	.99		16.41	683.80
Client 2	1	.96	.93	786	14.93	541.66
Client 3	1	.92	.95		16.50	541.66
Server	-	.94	.96		17.55	627.05

Experimental Setup

- The experiment was conducted using FederatedScope [1] FL platform.
- The experiment involves an FL server and 3 distributed clients; each deployed as a container on a Kubernetes cluster that included 3 worker nodes: 2 Raspberry Pi 4B and 1 VM running in our CyberRange. The cluster is configured to use both docker containers or Confidential Containers. The FL server and client 1 were deployed in the VM, client 2 and 3 on one Raspberry Pi each.
- The work utilized a two-layer CNN model (ConvNet2) for image classification with the MNIST [2] image dataset.
- For attacking the FL model, we used Improved Gradient Leakage attack (iDLG) [3].



* Power consumption was measured with Otii Arc Pro

Baseline Containerized FL with iDLG Attack mage State 3 Image State 4 Image State 3 Image State 2 Image State 1 Image State 20 Client 3 Client 2 Client 3 Client 1 Client 2 Client 2 Differential Privacy (NBAFL) with iDLG Attack Image State 59 Image State 65 Image State 49 Image State 2 Image State 41 Image State 9 Client 2 Client 2 Client 3 Client 2 Client 3 Client 3

Fig 3: iDLG Attacks on Baseline, DP, and TEEs

Takeaways

Fig 2: An architecture for the security and sustainability-driven concept

[1] Xie, Y., Wang, Z., Gao, D., Chen, D., Yao, L., Kuang, W., Li, Y., Ding, B., & Zhou, J. (2023). FederatedScope: A flexible federated learning platform for heterogeneity. Proceedings of the VLDB Endowment, 16(5), 1059-1072. https://doi.org/10.14778/3579075.3579081.

[2] L. Deng, "The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web]," in IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141-142, Nov. 2012, doi: 10.1109/MSP.2012.2211477.

[3] Ding, X., Liu, Z., You, X., Li, X., & Vasilakos, A. V. (2024). Improved gradient leakage attack against compressed gradients in federated learning. Neurocomputing, 608, 128349.

www.vttresearch.com

Contact: Muzammal Hoque, Andrea Gentili, and Andrea Dalla Costa Email: firstname.lastname@vtt.fi

Acknowledgements: Confidential 6G, SUNSET-6G and VTT are thanked for funding the work.

- CoCo excels by providing application agnostic security without impacting ML accuracy but comes with small memory, processing and time penalty
- DP works in any HW platform but impacts slightly accuracy and significantly energy use
- Overall, deploying FL in CoCo offers a balanced tradeoff between sustainability and security.

beyond the obvious

