
• 70% of compiled code vulnerabilities are due to memory safety issues.
• Return-oriented programming (ROP) is a class of code reuse attacks that attackers are widely using.
• Fine grained code randomization is a solution to mitigate this type of code reuse attacks.

Fine-Grained Load-Time 
Randomization of ELF binaries

Parsa Sadri Sinaki, Arto Niemi

ELF randomization steps
1. Partition code section into Randomization units (RU) with configurable 

size (e.g. page size)

2. Shuffle the RUs randomly

3. Fix all addresses used in the binary (e.g. target in branch instructions)

Conclusion
• Defense against code reuse attacks (ROP) in presence 

of information disclosure
• Reduce the size of randomized binaries

Future work
• Randomise pages in demand on load time (modify loader)

• Compatibility with signature and attestation

• Compatibility with page sharing in shared libraries

Problem
• Functions in an RU need to not cross page 

boundary so randomization doesn’t break functions

RE1
RE2
RE3

Page 1

Page 2

Page 3

F1

F2

L2

F3

F4

F5

Page 4 R

F1

F2

L2

...

NOP
NOP

F3

NOP

NOP
NOP

NOP

F4

F5
NOP

Original .text 
section RU 1 RU 2 RU 3

F1

F2

L2
NOP
NOP

F3

NOP

NOP
NOP

NOP

F4

F5
NOP

Padded .text 
section

F1

F2

L2
NOP

NOP

F3

NOP

NOP
NOP

NOP

F4

NOP

F5

NOP
NOP

Reuse 
padding for 
functions

F1

F2

L2
NOP

NOP

F3

NOP

NOP

NOP

NOP

F4

S3

F5

S1
S2

Reuse padding 
for extra binary 

info

RE1
RE2
RE3
RE4

Fi=function, Li=literal pool of Fi, R=Relocation table, REi=Relocation entry, 
Si=Symbol from symbol table (.symtab)

Compile

Partition and 
pad

Replace pad 
with useful info

Encode 
randomization 

info into a 
special section

Load binary

Extract 
randomization 

info from special 
section

Extract useful 
info from 
paddings

Compute 
random 

permutation

Load a page of 
binary into 

memory (page 
fault)

Copy page into 
a randomized 

address

Fix the page

Execute code 
from the page

Build time Load time Run time

• Exploiting a memory safety vulnerability:
○ Overflow (Mitigated by control-flow integrity and 

stack canaries)
○ Code injection (Mitigated by W⊕X)
○ Code reuse (Mitigated by ASLR)
○ Code reuse + information disclosure (code 

randomization) (No widely deployed method)

Helsinki System Security Lab (HSSL)
HSSL drives renewal and mastery in the field of platform and device related security technologies, especially for Huawei consumer devices such as mobile phones, laptops, televisions and

automotive. We do research in topics such as hardware-assisted isolation and integrity, as well as in operating system protection (hypervisor, TEE, secure enclaves and kernel hardening). We
also carry expertise in cryptography and systems security functionality such as device key management (PKI), device attestation and key-store solutions.

Randomization requirements
● Randomization per execution to be secure against brute forcing
● Randomization at load time or later to be secure against static 

analysis
● Randomize each page when it is loading into memory (page 

fault)
○ Reduce load time overhead
○ Not randomize pages that will not be loaded

RU 1

RU 2

RU 3

RU 4

RU 5

RU 1

RU 5

RU 3

RU 4

RU 2

RU 1

RU 5

RU 3

RU 4

RU 2
Partitioned 

ELF
Shuffled 

ELF
Fixed 
ELF

Solution
• Insert padding after each RU to make page aligned

New problem
• Padding at the end of RUs, expands the original 

binary

New solution
• Repurpose paddings to store randomization data, 

relocation entries, or RUs.


