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 Security of future networks
• AI for security functions in B5G/6G + mobile networks
• Security automation in constrained distributed environments (edge security)

• Secure network architecture
• B5G/6G networks simulation with cyber range

 AI & security + Trustworthy AI systems
• AI automation in security operations
• Defenses against adversarial AI attacks

• Secure AI system development & deployment
• Security assessment for AI systems

 Cyber insurance for emerging technologies 
• Security testing and security posture management 
• Security risk and compliance management (NIS2, CR Act, AI act)

• Security training & security scenarios simulation with cyber range
• Targeted applications: AI, cloud, edge network, critical infrastructures
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Network Security - BA6403
Research focus & interests
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Trustworthy AI
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→ Resilience against attacks
• Evasion attack

• Poisoning attack
• Data inference
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Security of AI
AI systems are vulnerable against new attacks that only targets them: adversarial attacks

• Adversarial data to cause skew in model decision

Model poisoning / backdooring

• Input maliciously crafted to be misclassified 

Model evasion

• Uncovering ML models via probing

Model stealing

• Uncovering private data from ML models

Data inference

Training data confidentiality

ML model integrity

Prediction integrity

ML model confidentiality
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Adversarial ML: attack surface
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RQ1: How to ensure and provide evidence that AI systems are secure?

Security assessment & certification for AI systems

• Metrics to quantify the security level of AI systems

• Methods and tools for security testing (to compute security metrics)

RQ2: How to make AI systems resilient against adversarial attacks?

Detection of and protection against adversarial attacks

• Detection approach against evasion attacks

• Protection against poisoning attacks in federated learning

RQ3: How to make AI systems resilient against the main cybersecurity threats?

Mitigation of supply chain attacks against AI systems

• Identification of AI-specific supply chain attacks

• Definition of conventional and novel mitigation approaches

Research interests in AI security
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Security assessment 
& certification 
for AI systems
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Aimed functionalities

 Produce quantifiable measures of security/resilience

 Provide an upper bound estimation for security vulnerability

 Implement realistic attacker capabilities

 Applicability against virtually any ML model

Main targeted applications

 Identify and fix vulnerabilities in ML models before deployment

 Select the most secure + reliable (+ explainable + etc.) ML model

• Evaluate the performance/security(/explainability) trade-off

 Document the performance and the security posture of ML-based systems

• Support for AI risk management 
• Evidence for security compliance

Security assessment for AI
Evasion attacks
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Process

 Generate synthetic queries: adversarial examples

 Analyze model outputs: correct/incorrect prediction

 Compute resilience metrics based on attacks stats and success

 Generate vulnerability/resilience report

Implements several blackbox evasion attacks

Computes 3 resilience metrics

 Impact

 Complexity

 Detectability

Empirical security diagnosis for evasion 
attacks
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Protection against 
poisoning attacks in 
federated learning
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Poisoning attacks in federated learning

Clients

Global

model
AggregatorAttack process

 Malicious client(s) craft poisoned local model

 Send update to aggregator

 Aggregation compromises global model

Impact of attack

 Compromise integrity of global model
• Decrease in overall accuracy / performance

• Embedding of backdoors

 Affect all model users

Local

models
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FLAME [1] + SafeLearn [2] against federated learning poisoning 

 Privacy-preserving process implemented in aggregator

 Cluster local models to discard obviously malicious updates

 Adaptive clipping to limit negative impact of any single model

 Adaptive noising to mitigate targeted changes to global model

Protection in hierarchical federated learning [3]

 Adapt process with intermediate aggregation layers

Defenses against FL poisoning

[1] FLAME: Taming backdoors in federated learning. In 31st USENIX Security Symposium (USENIX Security 22)

[2] SafeLearn: Secure aggregation for private federated learning. In 2021 IEEE Security and Privacy Workshops (SPW)

[3] Robust Technique against Poisoning Attacks in Hierarchical Federated Learning. In 2024 IEEE CCNC
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Mitigation of 
supply chain 
attacks against 
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Supply chain attack vectors
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Vectors for ML supply chain attacks to secure

 Training data
• Data integrity and quality is difficult to enforce and verify

 Pre-trained ML models
• Complex ML models can be compromised with backdoors or biased

• ML model integrity is very hard to verify (just weights…)

 ML software & libraries
• ML library compromise is more subtle and difficult to detect

• E.g., change in objective function can compromise ML algorithm

 ML hardware, e.g., GPU
• Lesser risk, might be harder to compromise

Securing the AI supply chain
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