

Cybersecurity at VTT Research overview

VTT - beyond the obvious

Samuel Marchal Research Team Leader samuel.marchal@vtt.fi

Network Security - BA6403 Research focus & interests

Security of future networks

- AI for security functions in B5G/6G + mobile networks
- Security automation in constrained distributed environments (edge security)
- Secure network architecture
- B5G/6G networks simulation with cyber range

AI & security + Trustworthy AI systems

- Al automation in security operations
- Defenses against adversarial AI attacks
- Secure AI system development & deployment
- Security assessment for AI systems

Cyber insurance for emerging technologies

- Security testing and security posture management
- Security risk and compliance management (NIS2, CR Act, AI act)
- Security training & security scenarios simulation with cyber range
- Targeted applications: AI, cloud, edge network, critical infrastructures

Secure & Trustworthy Al systems

Security of Al

Al systems are vulnerable against new attacks that only targets them: adversarial attacks

Adversarial ML: attack surface

Research interests in AI security

<u>RQ1</u>: How to ensure and provide evidence that AI systems are secure?

Security assessment & certification for AI systems

- Metrics to quantify the security level of AI systems
- Methods and tools for security testing (to compute security metrics)

RQ2: How to make AI systems resilient against adversarial attacks?

Detection of and protection against adversarial attacks

- Detection approach against evasion attacks
- Protection against poisoning attacks in federated learning

<u>RQ3</u>: How to make AI systems resilient against the main cybersecurity threats?

Mitigation of supply chain attacks against AI systems

- Identification of AI-specific supply chain attacks
- Definition of conventional and novel mitigation approaches

VTT

Security assessment & certification for AI systems

Security assessment for Al Evasion attacks

Aimed functionalities

- Produce quantifiable measures of security/resilience
- Provide an upper bound estimation for security vulnerability
- Implement realistic attacker capabilities
- Applicability against virtually any ML model

Main targeted applications

- Identify and fix vulnerabilities in ML models before deployment
- Select the most secure + reliable (+ explainable + etc.) ML model
 - Evaluate the performance/security(/explainability) trade-off
- Document the performance and the security posture of ML-based systems
 - Support for AI risk management
 - Evidence for security compliance

Empirical security diagnosis for evasion attacks

Process

- Generate synthetic queries: adversarial examples
- Analyze model outputs: correct/incorrect prediction
- Compute resilience metrics based on attacks stats and success
- Generate vulnerability/resilience report

Implements several blackbox evasion attacks

Computes 3 resilience metrics

VTT – beyond the obvious

Impact

07/08/2024

- Complexity
- Detectability

Vulnerability report

Protection against poisoning attacks in federated learning

Poisoning attacks in federated learning

Clients

Attack process

- Malicious client(s) craft poisoned local model
- Send update to aggregator
- Aggregation compromises global model

Impact of attack

- Compromise integrity of global model
 - Decrease in overall accuracy / performance
 - Embedding of backdoors

Affect all model users

Defenses against FL poisoning

FLAME [1] + SafeLearn [2] against federated learning poisoning

- Privacy-preserving process implemented in aggregator
- Cluster local models to discard obviously malicious updates
- Adaptive clipping to limit negative impact of any single model
- Adaptive noising to mitigate targeted changes to global model

Protection in hierarchical federated learning [3]

Adapt process with intermediate aggregation layers

[1] FLAME: Taming backdoors in federated learning. In 31st USENIX Security Symposium (USENIX Security 22)
[2] SafeLearn: Secure aggregation for private federated learning. In 2021 IEEE Security and Privacy Workshops (SPW)
[3] Robust Technique against Poisoning Attacks in Hierarchical Federated Learning. In 2024 IEEE CCNC

Mitigation of supply chain attacks against Al systems

Supply chain attack vectors

Securing the AI supply chain

Vectors for ML supply chain attacks to secure

- Training data
 - Data integrity and quality is difficult to enforce and verify
- Pre-trained ML models
 - Complex ML models can be compromised with backdoors or biased
 - ML model integrity is very hard to verify (just weights...)
- ML software & libraries
 - ML library compromise is more subtle and difficult to detect
 - E.g., change in objective function can compromise ML algorithm
- ML hardware, e.g., GPU
 - · Lesser risk, might be harder to compromise