

On Resource Consumption of Distributed Machine Learning in Network Security

<u>Muzammal Hoque</u>, Ijaz Ahmad

VTT Technical Research Center of Finland muzammal.hoque@vtt.fi

- Machine Learning (ML) is expected to be at the core of 6G network security.
- The resource consumption of ML processes can be exhaustive, leading to compromises and security lapses.
- A comparative analysis of resource consumption for ML in network (6G) security is necessary.

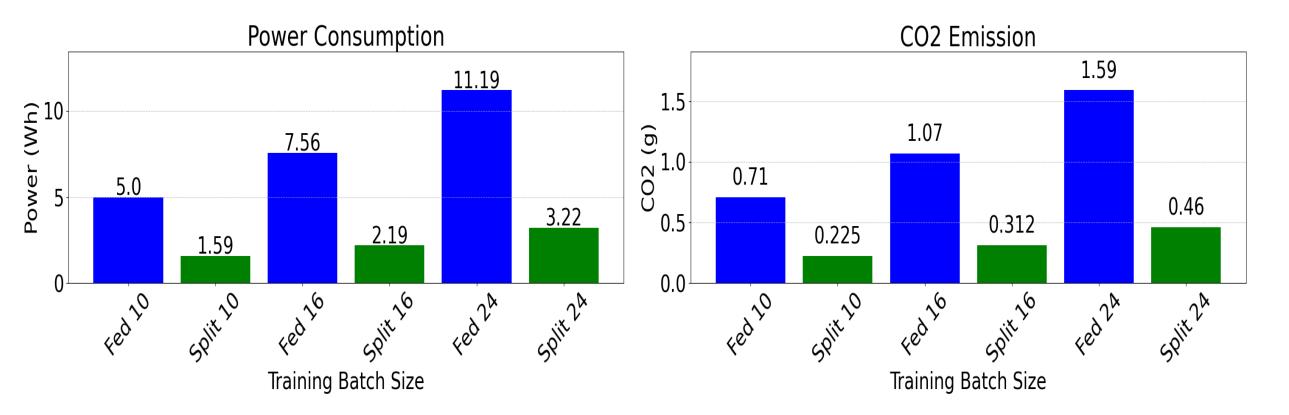
Problem Statement

- Communication network transmission has limited resources like power, computation and bandwidth.
- Device specific resource constraints exist.
- Different security functions have different implementation methods and resource costs.
- Using ML for security functions consumes resources for both ML and security operations.
- Investigating resource consumption of ML techniques used for network security is necessary.
- This study examines resource consumption of Federated Learning (FL) vs. Split Learning (SL) for network DDoS

Resource Consumption Analysis

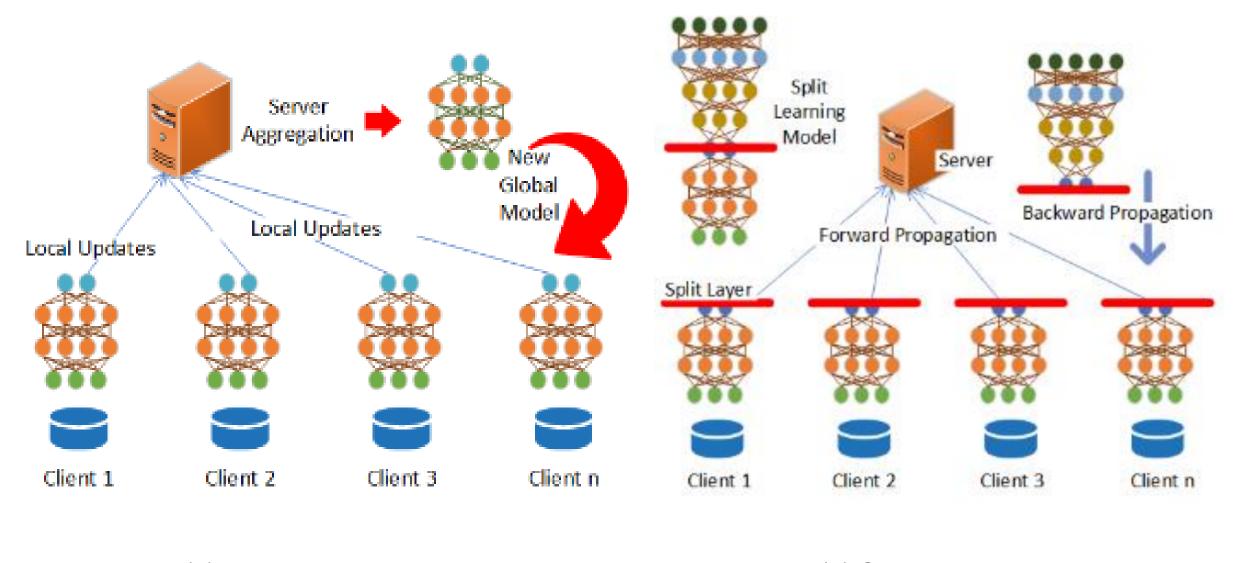
Models	Avg. CPU (%)	Peak Memory (MB)	Power (Wh)	Time (Min)	CO2 (g)
Fed 10	8.10	1974.59	5.00	19.29	0.71
Split 10	8.52	5997.20	1.59	5.73	0.23
Fed 16	7.78	2000.15	7.56	29.05	1.07
Split 16	5.22	8286.37	2.19	7.67	0.31
Fed 24	8.38	1960.54	11.19	43.31	1.59
Split 24	8.81	11335.62	3.22	11.14	0.46

Table 1: Resource Consumption Comparison of different client batch size for training of FL and SL



detection in terms of:

• CPU, Memory, Power, Delay and CO2 emission



(a) Federated Learning(b) Split LearningFig 1: A High-level Presentation of Two popular distributed learning.

Experimental Setup

- Experiment were conducted with 32 FL and SL clients:
 - 3 training setups: 10, 16 and 24 randomly picked clients contribute to training.
- South SL and FL models use a similar neural network structure. The SL model is split into two parts:

Fig 2: Power Consumption and CO2 emission of different client batch size for training FL and SL

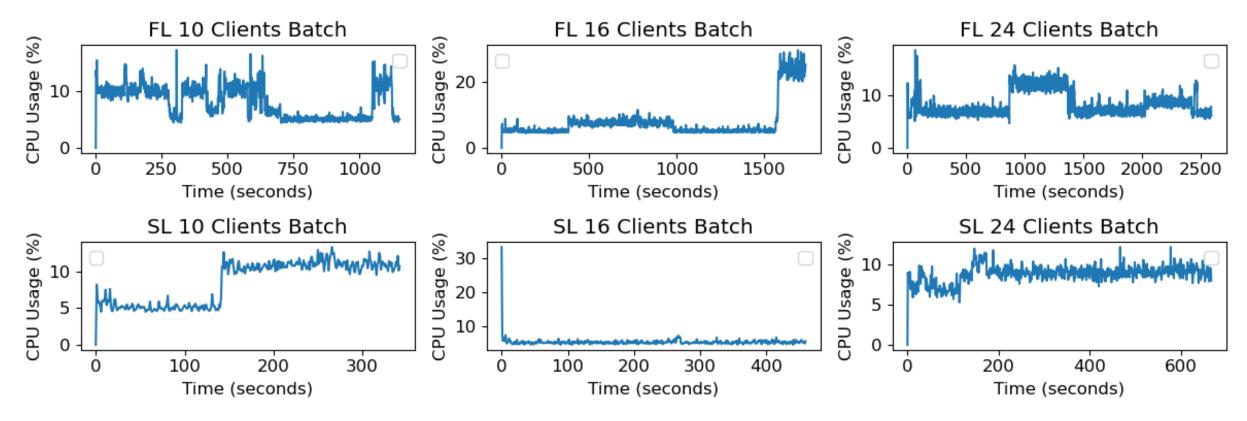


Fig 3: CPU usage of different client batch size for training of FL and SL

Takeaways

- Both FL and SL perform well with 99.6% accuracy for all DDoS detection scenarios.
- Resource consumption:
 - **CPU usage:** SL had higher CPU usage, while FL had higher peaks and variability.
- Lower part of DNN model on the client device
- Upper part the other on the server.
- The work utilized the DDoS evaluation dataset (CIC-DDoS2019) [1].

[1] I. Sharafaldin, A. H. Lashkari, S. Hakak and A. A. Ghorbani, "Developing Realistic Distributed Denial of Service (DDoS) Attack Dataset and Taxonomy," 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India, 2019, pp. 1-8, doi: 10.1109/CCST.2019.8888419.

- Memory usage: FL used 3-5.8x less memory than SL.
- **Power consumption:** SL used 3.1-3.46x less power than FL.
- **Delay:** SL was 3.4-3.9x faster than FL.
- **CO2 emission:** SL emitted 3.2-3.5 times less CO2.
- There should be adaptive security and ML selection procedures to fit ML-based security according to available resources.

www.vttresearch.com

Contact: Muzammal Hoque, Research Assistant, Tel. +358 505995038, muzammal.hoque@vtt.fi

beyond the obvious

Acknowledgements: Marchal Samuel is thanked for technical assistance, and SUNSET-6G and VTT for funding the work.