Secure Systems Group, Aalto University

• Trust in remote devices can be established via remote attestation.
• Currently hardware specific solutions exist.
• Our solution converts the proprietary evidence format to standard format in WebAssembly.

Introduction
• A security mechanism by which an entity i.e. Attester provides information about its hardware and software configurations to a remote entity i.e. Relying Party.
• The Remote ATtestation procedureS (RATS) architecture provides a standardized framework to support the attestation process (Figure 1).

EAT, Trust, Verify
• Converts the proprietary evidence format to a standard EAT format after signature verification.
 • A module for verifying the evidence signature and converting it can be sent alongside the evidence from Attester.
 • The Verifier can dynamically acquire the capability to verify evidence for new hardware platforms.

The problem
• Current solutions are primarily hardware-specific, tailored to individual Trusted Execution Environments (TEEs) using proprietary mechanisms.

Implementation
• Our approach converts proprietary evidence into a standard format inside a WebAssembly module (Figure 2).
• Evidence signature verification is also done inside the WebAssembly module (Figure 2).
• Different WebAssembly modules loaded for different proprietary evidence formats without affecting the entire system.
• The sandboxed nature of WebAssembly ensures portability and security.