5G Security
Alf Zugenmaier, Munich University of Applied Sciences
March 1, 2019
Warning

This presentation has a high density of acronyms. If you would like to be reminded of their meanings, please ask or look up at http://webapp.etsi.org/Teddi/.
Agenda

- 5G Standardization Process
- 5G Architecture
- 5G's Security Goals
- 5G Key Enhancements
- Summary
5G Security 4 A. Zugenmaier

Agenda

- 5G Standardization Process
- 5G Architecture
- 5G's Security Goals
- 5G Key Enhancements
- Summary
5G Standardization Process - Actors

- **ITU-T**
 - High level requirements (IMT2020)

- **IETF**
 - RFCs – protocols
 - IPsec
 - TLS
 - EAP

- **3GPP**
 - System specification
 - Interoperability

- **Standards bodies**
 - ETSI, etc.
5G Standardization Process – 3GPP

- Industry Association
- Organizational Partners
 - ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC
- Members can attend meetings
 - Companies, Ministries, etc.
- Output
 - Technical reports
 - Feasibility study
 - Technical specifications
 - System specification of procedures (API like view)
3GPP Process

➤ Structure
 ❖ Technical Specification Groups (SA, CT, RAN)
 ❖ Working Groups (e.g. WG SA3: security)

➤ Project planning
 ❖ Study items (e.g. Study on Next Generation Security Architecture)
 ▪ Output: none
 ❖ Work items (e.g. 5G Phase 1 security)
 ▪ Output: TS 33.501

➤ Releases
 ❖ 5G phase 1 – R15

➤ Stages
 ❖ Requirements, architecture, protocols
3GPP process

- **Input**
 - Contribution driven
 - Textual modifications to specifications
 - Member company contributions

- **Consensus**
 - Lack of sustained objection
 - Voting: more than 71% in favour
Agenda

- 5G Standardization Process
- 5G Architecture
- 5G's Security Goals
- 5G Key Enhancements
- Summary
Mobile Network Architecture in a Nutshell
Mobile Network Architecture in a Nutshell
Mobile Network Architecture in a Nutshell

- Radio Access Network
- Core Network
- Access Stratum Security
- Network Domain Security
- Network Domain Security
- Security Gateway
- Gateway
- Other Network(s)
5G Mobile Network Architecture in a Nutshell

DU: Distributed Unit of gNodeB
CU: Central Unit of gNodeB
AMF: Access Management Function
SMF: Session Management Function
UPF: User Plane Function
UDM: Unified Data Management
ARPF: Authentication credential
Repository and Processing Function

DU: Distributed Unit of gNodeB
CU: Central Unit of gNodeB
AMF: Access Management Function
SMF: Session Management Function
UPF: User Plane Function
UDM: Unified Data Management
ARPF: Authentication credential
Repository and Processing Function

Radio Access Network
- Access Stratum Security
- Network Domain Security
- Non-Access Stratum Security

Core Network
- Network Domain Security

Gateway

Other Network(s)
5G Mobile Network Architecture

Home network

Visited / home network

- gNB: 5G base station
- AMF: Access Management Function
- SEAF: Security Anchor Function
- SMF: Session Management Function
- UPF: User Plane Function
- UDM: Unified Data Management
- ARPF: Authentication credential Repository and Processing Function
- N3IWF: Non-3GPP InterWorking Function

Non-3GPP access (e.g. WLAN)

external AAA for secondary authentication
RAN architecture option

- Non standalone with 4G core
- Dual Connectivity
- 5G NR to increase capacity
- eNB as master node
- gNB as secondary node
- Security as in 4G
Agenda

- 5G Standardization Process
- 5G Architecture
- 5G's Security Goals
- 5G Key Enhancements
- Summary
5G Security Goals

➢ At least as good as 4G
 ❖ Subscriber authentication
 ❖ Encryption on radio interface
 ❖ Protection of subscriber identity
 ❖ Network authentication
 ❖ Key separation

 ❖ Good for homogenous security requirements
 ▪ Same security applied to all users and services

➢ Make it better
 ❖ Evolution instead of revolution
5G Security Goals

- Fix known weaknesses
 - Some of them
- Provide unified framework for authentication
- Enable secondary authentication for applications
- Network and service flexibility
Agenda

- 5G Standardization Process
- 5G Architecture
- 5G's Security Goals
- 5G Key Enhancements
- Summary
SUPI (IMSI) Privacy

4G
- Initial attach with permanent identity
- Response to identity request in clear

5G
- Encryption of SUPI with public key of home operator (SUCI)
- Routing information (home network ID) in clear
- SUPI revealed to VPLMN only after authentication
- Binding of SUPI into key
 - UE and HPLMN have to use the same SUPI: requested for lawful intercept purposes
- Respond to identifier request with SUCI
- No SUPI based paging
More Privacy

- **Service request messages**
 - Network may have lost UE keys
 - UE sends in clear only information for locating security context
 - Initial NAS protection

- **Reallocation of temporary IDs**
 - After security set up
 - On every periodic mobility registration update
 - After use in paging
Unified Security Framework

- Credential storage on secure hardware (UICC)
- Access via 3GPP radio and non-3GPP radio
- Authentication
 - EAP AKA' for 3GPP and non 3GPP
 - Native AKA for 5G access
- One security context for both access technologies
Radio Network Security

- **Integrity protection**
 - Finally!

- **Split of gNB into Central and Distributed Unit (CU/DU)**
 - CU performs security functions (confidentiality/integrity)
 - Can be located closer to the core

- **Visibility**
 - Requirement to enable applications to check security being applied to the connection
Increased home network control

- Proof of presence
 - UE is in visited network

- Native to EAP AKA

- 5G AKA
 - Challenge Response with UE
 - Visited network receives hash of response
 - Response has to be forwarded to home network

- Linking of subsequent procedures
 - Registration procedure only accepted after successful authentication
Trust model – non roaming

- Separation of AMF (mobility) and SEAF (security)
Key hierarchy

- **Key separation between trust domains**

- **Future proofing:** bid down protection by ABBA parameter in K_{AMF} derivation
Trust model - roaming
Requirements for Interoperator Interconnect

- End to end confidentiality and integrity
- Authenticity of the sending network
- Support addition, deletion, modification of information elements by intermediate nodes
Security for Interoperator Interconnect

NF -> cSEPP

Symmetric key A

HTTP/2 Request

JWE

Clear text IEs

Encrypted IEs (JWE)

Metadata

N32-c

clPX -> pIPX

Private key clPX

clPX

JWS

N32-f

pIPX

Private key pIPX

JSON Patch modification(s)

JWS

JSON Patch modification(s)

Clear text IEs

Encrypted IEs (JWE)

Metadata

N32-f

pSEPP -> NF

Symmetric key A

HTTP/2 Request

Public key clPX

Public key pIPX
Steering of Roaming

- UE connects to "best" network
- Home operator may want to reconfigure UE about "best"

- Inclusion of steering list in registration accept
- Optional confirmation
Agenda

- 5G Standardization Process
- 5G Architecture
- 5G's Security Goals
- 5G Key Enhancements
- Summary
5G Security Architecture

- UDM
- ARPF
- SEPP
- AMF
- SEAF
- SMF
- SEPP
- Security Gateway
- UPF
- gNB
- CU
- DU
- CU
- AMF
- SMF
- UPF
- Home network
- Visited / home network

Security aspects:
- User plane security
- AS (Radio) control plane security
- NAS security
- Interconnect security
- NDS/IP (IPsec)
- TLS
Summary

- Evolution of 4G security
- More privacy
- Unified security framework
- RAN security
 - Integrity
 - Security termination point
- Future proofing
- Interconnect Security
Thank you for your attention